Convolutional Neural Network and Convex Optimization

نویسنده

  • Si Chen
چکیده

This report shows that the performance of deep convolutional neural network can be improved by incorporating convex optimization techniques. First, we find that the sub-models learned by dropout can be more effectively combined by solving a convex problem. Also, we generalize this idea to models that are not trained by dropout. Compared to traditional methods, we get an improvement of 0.22% and 0.76% test accuracy on CIFAR10 dataset. Second, we investigate the performance for different loss functions borrowed from the convex optimization community and find that selecting loss functions matters a lot. We also implement a novel loss based on the idea of One-VersusOne SVM, which has never been explored in the literature. Experiment shows that it can give performance comparable to the standard cross-entropy loss, without being fully tuned.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convexified Convolutional Neural Networks

We describe the class of convexified convolutional neural networks (CCNNs), which capture the parameter sharing of convolutional neural networks in a convex manner. By representing the nonlinear convolutional filters as vectors in a reproducing kernel Hilbert space, the CNN parameters can be represented as a low-rank matrix, which can be relaxed to obtain a convex optimization problem. For lear...

متن کامل

An efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems

Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...

متن کامل

Deep Online Convex Optimization by Putting Forecaster to Sleep

Methods from convex optimization such as accelerated gradient descent are widely used as building blocks for deep learning algorithms. However, the reasons for their empirical success are unclear, since neural networks are not convex and standard guarantees do not apply. This paper develops the first rigorous link between online convex optimization and error backpropagation on convolutional net...

متن کامل

Deep Online Convex Optimization with Gated Games

Methods from convex optimization are widely used as building blocks for deep learning algorithms. However, the reasons for their empirical success are unclear, since modern convolutional networks (convnets), incorporating rectifier units and max-pooling, are neither smooth nor convex. Standard guarantees therefore do not apply. This paper provides the first convergence rates for gradient descen...

متن کامل

An efficient modified neural network for solving nonlinear programming problems with hybrid constraints

This paper presents ‎‎the optimization techniques for solving‎‎ convex programming problems with hybrid constraints‎.‎ According to the saddle point theorem‎, ‎optimization theory‎, ‎convex analysis theory‎, ‎Lyapunov stability theory and LaSalle‎‎invariance principle‎,‎ a neural network model is constructed‎.‎ The equilibrium point of the proposed model is proved to be equivalent to the optima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014